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1. Introduction

1.1 Background

Mitigating climate change is one of the most important goals for strategic sustainable development.
There is a clear and pressing need to quantify the greenhouse-gas (GHG) footprint of all human
activities. The GHG status of freshwater reservoirs — that is, any change in GHG emissions in a river
basin resulting from the creation of such a reservoir — has been discussed in both scientific and
policy forums.

The uncertainties and lack of consensus on the assessment of the GHG status of freshwater
reservoirs led to consultation between scientists, the International Hydropower Association (IHA)
and UNESCOQ'’s International Hydrological Programme (UNESCO-IHP), with the subsequent launch of
the UNESCO/IHA GHG Research Project - GHG Status of Freshwater Reservoirs. This Project, hosted
by the IHA in collaboration with UNESCO-IHP, aims to improve understanding of the impact of
reservoirs on natural GHG emissions and of the processes involved, and to help fill knowledge gaps
in this area.

The Project has run since August 2008, through a consensus-based, scientific approach, involving
collaboration among many institutions and experts, through participation in workshops,
development of products/deliverables, and acting as peer review. The resulting deliverables have
been reviewed by the Project’s peer-review group (the UNESCO/IHA Forum), which comprises more
than 200 researchers, scientists and professionals working in this field, from more than 100
institutions, including universities, research institutes, specialist companies and sponsoring agencies.

The original objectives of the Project are to: (1) develop standard guidance for net GHG estimations;
(2) promote measurements and calculate net emissions from a representative set of reservoirs,
building a database of reliable, comparable data; (3) develop predictive modelling tools; and, (4)
develop guidance and assessment tools for mitigation.

The standard guidance for net GHG estimations was achieved with the publication of the GHG
Measurement Guidelines (UNESCO/IHA, 2010). These guidelines are being applied to a broad range
of sites around the world (more than 20 reservoirs, located in Asia, Europe, South America and
North America), with measurements captured in a Project database. The database is an ongoing task
during the Project lifetime, to ensure the availability of reliable and comparable data for the
development of the other Project products, including predictive modelling and mitigation tools.

The development of the predictive models relies on data from the measurement programmes,
which will effectively only be available after application of the GHG Measurement Guidelines to a set
of representative reservoirs, during a period of at least two years. While there is not yet enough data
available, the Project is making use of existing published data of gross GHG emissions from previous
assessments on 169 reservoirs around the world, taking account of the involved uncertainties, to
develop an empirical model (GHG Risk Assessment Tool) in order to provide estimation of the level
of GHG emissions on proposed or existing freshwater reservoirs.

The development of guidance and assessment tools for mitigation can only be performed after
completion of the predictive tools. A framework for an initial mitigation guidance document is under
development by the Project to enable hydropower project developers to take advantage of the
knowledge created to date within the UNESCO/IHA GHG Research Project.
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1.2 Purposes and objectives of the GHG Risk Assessment Tool

The GHG Risk Assessment Tool (the Tool) provides an estimation of the level of gross GHG emissions
(existing or future) from a freshwater reservoir, based on limited and available field data, and gives
indication of when the assessment of net GHG emissions may be relevant.

The Tool was developed as an empirical model, based on already available published information,
for application to proposed sites, or existing freshwater reservoirs.

The Tool responds to needs from industry, financial institutions and decision makers for a product
that can be used as a screening tool as well as being able to provide assessment of the level of gross
GHG emissions for unmonitored and/or proposed new dam sites.

Emissions from the following GHG species are evaluated by the Tool:

Carbon dioxide (CO,): 80% of all GHGs released into the atmosphere are CO,. Freshwater reservoirs
do not significantly change natural CO, levels — the great majority of CO, emissions would naturally
occur, even without the reservoir, as part of natural transport processes (conduction, deposition,
and emission) in the water bodies at the area affected by the reservoir (upstream catchment,
flooded areas, downstream of the reservoir). CO, may, however, be released at different times and
places because of the existence of a reservoir. High emissions of CO, may require the assessment of
net GHG emissions to have their sources properly explained.

Methane (CH,): there is already broad consensus among the scientific community that CH, is the
main GHG species of concern in freshwater reservoirs. It is important to look at CH, emissions
because some freshwater reservoirs may create conditions for changes in the natural CH, levels in
the affected area. Also, according to IPCC (Forster et al., 2007), the global warming potential (GWP)
of CH, is 25 times stronger than that of CO,, for a 100-year time horizon. This means that CH, has the
potential (over a period of 100 years) to produce 25 times the effect of CO, on global warming.

This GHG Risk Assessment Tool estimates Gross GHG diffusive fluxes of CH, and CO, and qualifies the
predicted values as LOW, MEDIUM or HIGH potential emissions, compared to the distribution of
observed values in the dataset used for calibration of the model. The Tool outputs provide indication
of the need for assessment of net GHG emissions.

1.3 Updating the GHG Risk Assessment Tool

The GHG Risk Assessment Tool is being developed as a “living document”. As further data are
collected and analysed, its formulation can be revised, and the level of uncertainty can be reduced.

Future versions of the Tool could incorporate other factors such as: soil carbon content, water
temperature ranges, hydrodynamics parameters (such as stratification, residence time, and others),
primary production, and vegetation. There is a need for further research to obtain the necessary
data to properly test and evaluate the importance of these (and other) factors. The possibility of
including a three-step decision-tree approach® into this model will also be left for future versions. A
description of this approach is provided in ANNEX 1.

! Three-step decision-tree approach:

STEP ONE:  SOURCE (Capacity of the system to provide carbon and nutrients to the reservoir);
STEP TWO: ACCUMULATION (Capacity of the reservoir to create stock);

STEP THREE: RELEASE (Capacity of the reservoir to release the available stock).
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2. The concept of Net GHG Emissions

Net GHG emissions (GHG footprint, or GHG status of freshwater reservoirs) represent the change in
GHG emissions due to the creation of a reservoir.

All river basins naturally emit greenhouse gases. The introduction of a reservoir may change the way
this carbon is distributed in the system, by changing removals (GHG burial in sediments) and
emission patternsz.

The GHG status of freshwater reservoirs is properly assessed only when considering the impact on
GHG emissions in a river basin resulting from the creation of such a reservoir, at all portions of the
river basin influenced by the reservoir, and subtracting the effects of unrelated anthropogenic and
natural sources.

As net GHG emissions cannot be measured directly, their value has to be estimated by assessing
total (gross) GHG emissions in the affected area, comparing values for the pre- and post-
impoundment conditions, and excluding unrelated anthropogenic sources (UAS).

This approach has been reported by IPCC (2011), which defines net GHG emissions from freshwater
reservoirs as those “excluding unrelated anthropogenic sources and pre-existing natural emissions”,
and asserts that: “the assessment of man-made net emissions involves: a) appropriate estimation of
the natural emissions from the terrestrial ecosystem, wetlands, rivers and lakes that were located in
the area before impoundment; and b) abstracting the effect of carbon inflow from the terrestrial
ecosystem, both natural and related to human activities, on the net GHG emissions before and after
impoundment.”

Several other recent publications also acknowledge the importance of properly assessing the net
GHG emissions from freshwater reservoirs, such as: Chanudet et al. (2011), Demarty and Bastien
(2011), Goldenfum et al. (2009), Goldenfum (2009, 2010a, 2010b), Tremblay et al. (2010), IHA
(2010), and Sikar et al. (2012).

Recently developed knowledge shows that reservoir emissions may be smaller than previously
estimated (Barros et al., 2011; Chanudet et al., 2011), and the terrestrial GHG sink may be smaller
than currently believed (Bastviken et al., 2011). Also, new studies show evidence that tropical and
sub-tropical reservoirs can sometimes behave as carbon sinks (Sikar et al., 2009a, 2009b; Chanudet
et al.,, 2011; Ometto et al.,, 2010), and that anthropogenic activities contribute to increasing GHG
reservoir emissions (Del Sontro et al., 2010).

These research efforts imply that a proper assessment of the GHG emissions from reservoirs must
take into account all main processes involved, identifying when there is a need for assessment of net
GHG emissions.

This GHG Risk Assessment Tool does not evaluate Net GHG emissions. It predicts Gross GHG diffusive
fluxes (of CH, and CO,) and gives indication of when the assessment of Net GHG emissions may be
relevant.

2Itis important to notice that reservoirs do not change the amount of carbon in the hydrosphere-biosphere-
atmosphere system (the short-term carbon cycle), as they do not include new carbon in the system. As
recalled in Tardieu and Pigeon (2005), it is noteworthy that emissions from artificial reservoirs do not involve
returning long-term sequestered carbon into the system.
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3. User Guide

3.1 Structure of the Tool

The tool is presented in an Excel™ spreadsheet, divided in three worksheets: “Main”, “Simulations”

and “Auxiliary”. The contents of any of these worksheets can be viewed or printed by the User at

any time, but the only cells unlocked for the user are the “Input Values”, on worksheet “Main”.

A general description of how the input data and results are presented in each of these worksheets is

presented below.

e Worksheet “Main”:

e includes the cells for allowing the User to provide the values for all input parameters;

e shows information on the status of the values provided by the User (informing if these

values are inside or outside the range of the data used for calibration of the model);

e shows the results of the simulations:

Predicted values of gross GHG fluxes (of CH, and CO,) and its associated 67%
confidence intervals;

Qualification of the predicted values as LOW, MEDIUM or HIGH emissions, compared
to the distribution of observed values in the dataset used for calibration of the model;
Indication of the need for assessment of net GHG emissions;

Graphs for predicted gross GHG fluxes and their associated 67% confidence intervals.

e Worksheet “Simulations”:

e shows all values predicted for gross GHG fluxes and their associated 67% confidence

intervals in a table that can be printed by the User.

e Worksheet “Auxiliary”:

e Shows auxiliary elements needed by the model:

Input parameter values for simulation;

Range of the data used for calibration of the model;

Atomic mass of the chemical elements involved (N, C, O, H);

Molar mass of the main GHG species;

Thresholds adopted for qualification of the predicted values as LOW, MEDIUM or
HIGH emissions, compared to the distribution of observed values in the dataset used
for calibration of the model (see section 3.3.3 for more details).

More detailed descriptions of these elements, as well as of the criteria adopted in the model are

provided in sections 3.2 and 3.3. A description of the empirical models developed for this tool is
provided in ANNEX 2, and the dataset used for its development is shown in ANNEX 3.
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3.2 Use of the Tool spreadsheet

3.2.1 Parameters required to run the model

The values for all input parameters must be provided by the User in the “Input Value” column of the
table “INPUT DATA”, on the top of the worksheet “Main”. The variables in this table are categorised
in three groups: input data needed for estimation of both CO, and CH, fluxes; input data needed for
estimation of CO, fluxes; input data needed for estimation of CH, fluxes.

Selected reservoir age (years):

Number of years since impoundment (reservoir filled to full capacity).

This can refer to the present age of the reservoir or to any other year (up to 100) of interest.
This variable is needed for estimation of both CO, and CH, fluxes.

Mean annual air temperature (Celsius):
Mean annual air temperature at the reservoir area.
This variable is needed for estimation of both CO, and CH, fluxes.

Mean annual runoff (mm):
Mean annual runoff of the contributing catchment.
This variable is needed for estimation of CO, fluxes.

Mean annual precipitation (mm):
Mean annual precipitation on the contributing catchment’.
This variable is needed for estimation of CH, fluxes.

The values for the parameters mean annual temperature (°C), mean annual precipitation (mm), and
mean annual runoff (mm) were, in the development of the model, obtained from datasets available
from various open sources (see ANNEX 3).

3.2.2 Results of the simulations

The table with the “results of the simulations” provides information on whether the values entered
in the Tool are within the ranges of values of the data used to develop the models. It also shows
predicted gross GHG emission values (and approximate 67% confidence intervals) for the selected
reservoir age and integrates these values over a defined period. Graphs for predicted gross CO, and
CH, fluxes are also produced.

Section 3.3 gives explanation on how to analyse and interpret the results of the Tool.

® obs.: in the lack of the catchment information, a point estimate at the dam site can be adopted.
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3.3 Analysis and interpretation of the outputs of the Tool

3.3.1 Table INPUT DATA

The “STATUS” column on the “INPUT DATA” table informs the User if the entered values are within
the ranges of values of the data used to develop the models. If an input value falls outside the range
of the data used for calibration of the model, it is considered an extrapolation, and the results have
to be considered with care (the Tool was developed as an empirical model - so the predicted values
are more reliable when there are no extrapolations).

3.3.2 Uncertainty of the estimates

Empirical models were developed to explain the variability of gross CO, and CH, diffusive fluxes. An
intrinsically non-linear approach was adopted, affording flexibility in the shapes of the curve
describing the initial decline of GHG emissions following flooding (see ANNEX 2 for more details on
the empirical model).

The model for predicting CO, diffusive fluxes was able to explain about 45% of the variation
observed in the data used for calibration, and had an uncertainty best described on a base-10
logarithmic scale (root mean square error=0.36).

The model for predicting CH, diffusive fluxes was able to explain about 42% of the variation
observed in the data used for calibration. Its uncertainty is best described by a logarithmic root
mean square error of 0.55.

The range of variability of the estimates can be expressed by the confidence interval of the predicted
values. The confidence interval for the predictions is obtained as:

P[“lower limit” < “GHG flux” < “upper limit”] = a%

meaning that there is a% of probability that the “GHG flux” will be in the interval between the
“lower limit” and the “upper limit”.

The values for “lower limit” and “upper limit” of the 67% confidence interval for the predictions are
provided by the Tool as explained in section 3.3.3.

As already described in sections 1.2 and 1.3, the models were developed based on already available
published information. The level of uncertainty will be reduced as new data becomes available,
providing conditions for obtaining better fit of the model, as well as allowing the model formulation
to be revised, with the possible inclusion of new parameters as input data for the model.
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3.3.3 Results of the simulations

Alerts:

Alerts are shown on the table with the “results of the simulations” to indicate that there is need to
consider the results with care for cases in which the input values are outside the ranges used for
model calibration.

Tables “Predicted gross CO, flux” and “Predicted gross CH, flux”:

The tables “Predicted gross annual CO, flux” and “Predicted gross annual CH, diffusive flux” show
the predicted values of gross GHG fluxes for the selected reservoir age and for the average over an
integration period of 100 years (in accordance with IPCC, 2006, the lifecycle assessment period for
GHG emissions in freshwater reservoirs is 100 years), as well as the upper and lower limits of their
associated 67% confidence intervals.

The uncertainty for the average over the 100 year integration period is smaller than the uncertainty
for an individual year. The much narrower confidence intervals of the integrated flux assumes that
the uncertainties in the predicted yearly fluxes are independent of one another and therefore
average themselves out over the integration period.

It is important to stress that the lower and upper confidence limits are indicative only of the likely
precision of the models and of the uncertainty of the results (see section 3.3.2). For the purposes of
estimating expected fluxes, the predicted values should be used, not the outer limits.

The predictions are then compared to the distribution of observed values in the dataset used for
calibration of the model, divided into three categories, and are given a heuristic qualifier as LOW
(first quartile, or, 0-25% of the data), MEDIUM (second+third quartile, or 25-75%) or HIGH (last
quartile, or 75-100%) emissions (see ANNEX 3 for more details on the dataset). The column “Action
Required” gives indication of when the assessment of NET GHG emissions may be relevant as
follows:

LOW or MEDIUM predicted values: No need to assess Net GHG emissions, unless indicated by
other predicted values;

HIGH CO, predicted values: The assessment of Net GHG emissions should be taken into
consideration.

The criteria for requiring this action takes into consideration that high emissions of CO, can
require the assessment of net GHG emissions to have their sources properly explained.

As stated in section 1.2, although CO, may be released at different times and places because of
the existence of a reservoir, the majority of the natural CO, levels are not significantly changed if
the whole affected area (upstream, flooded areas and downstream) is taken into consideration.
Consequently, the causes of high CO, emissions have to be properly investigated.

HIGH CH, predicted values: The assessment of Net GHG emissions is recommended.

This recommendation is based on the importance of CH, emissions in reservoirs.

As stated in section 1.2, reservoirs may create the conditions under which CH, can be produced
and released. As CH, has the potential (over a period of 100 years) to produce 25 times the
effect of CO, on global warming (the Global Warming Potential — GWP), any change in CH,
emissions has to be properly acknowledged.
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Graphs for predicted CO, and CH, fluxes and associated uncertainty

Graphs for predicted gross CO, and CH, fluxes and their associated 67% confidence intervals, over a

100 year period, are provided on the worksheet “Main”. The predicted values of fluxes and limits for

the 67% confidence intervals are also available for printing on worksheet “Simulations”. Please note

that the predicted gross CO, fluxes are provided as “mg C-CO, m

2 d", and predicted gross CH,

diffusive fluxes are provided as “mg C-CH, m™> d™”.

For more details and conversion factors see ANNEX 4.

3.3.4 General but important features

Predicted fluxes nominally only include diffusive fluxes.

Due to the lack of reliable information from a sufficient variety of sources, other pathways
could not be included in the models. Consequently, the predicted total fluxes do not include
some pathways, such as CH, bubbling and downstream degassing.

Predicted fluxes are gross emissions, including emissions from unrelated anthropogenic
sources (UAS) and emissions in the area before impoundment. An assessment of the GHG
impact of creating a reservoir can only be performed by estimating the NET GHG emissions.

All fluxes are expressed in mg C m?2 d* — they are noted as “mg C-CO,” or “mg C-CH,” to
make clear that these “mg of C” refer to Carbon in a CO, or in a CH, molecule, respectively.

The integrated fluxes correspond to the cumulative emissions over the integration period
(100 years) divided by the total length of the integration period. It thus corresponds to the
average emission rate over the 100 year integration period.

Lower and upper confidence limits are indicative only of the likely precision of the models
and of the uncertainty of the results. For the purposes of estimating expected fluxes, the
predicted values should be used, not the outer limits.
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ANNEX 1 — THREE-STEP DECISION-TREE APPROACH

The UNESCO/IHA GHG Research Project proposed a technical approach for the risk assessment of
the vulnerability of a freshwater reservoir to enhanced GHG emissions, presented as a three-step

process. The present version of the GHG Risk Assessment Tool was developed as an empirical model,
based on already available published information. As further data becomes available, future versions
of the Tool could include the three-step decision-tree approach, as proposed by the UNESCO/IHA
GHG Research Project.

STEP ONE: SOURCE (Capacity of the system to provide carbon and nutrients to the reservoir)

If the system (upstream catchment) characteristics imply a low carbon and nutrient stock, or non-
labile carbon and nutrients, the introduction of a reservoir is expected to present low vulnerability to
an increase in GHG emissions - otherwise, it is necessary to evaluate step two.

Main factors affecting carbon and nutrient supply for reservoirs:

e Carbon and nutrient load

e Rainfall

e Soil type and land use

e Biomass of plants, algae, bacteria and animals in the reservoir and in drawdown zone

STEP TWO: ACCUMULATION (Capacity of the reservoir to create stock)

If the reservoir characteristics imply a low capacity to accumulate GHG stock, the reservoir is
expected to present low vulnerability to an increase in GHG emissions, and there is no need to
assess net GHG emissions, otherwise it is necessary to evaluate step three.

Main factors affecting GHG accumulation in reservoirs:
e Water temperature
e Residence time
Stratification of the reservoir body (likelihood)
Reservoir age
e Drawdown zone exposure (changes in water depth)

STEP THREE: RELEASE (Capacity of the reservoir to release the available stock)

If the reservoir characteristics imply a low capacity to release its GHG stock, the reservoir is expected
to present low vulnerability to an increase in GHG emissions, and there is limited need to assess net
GHG emissions; if there is a medium to high capacity to release the available GHG stock, the
reservoir is expected to present high vulnerability to gross GHG emissions, and it is necessary to
measure and assess the net GHG emissions relating to the specific reservoir.

Factors affecting GHG release in reservoirs:
e Wind speed and direction
e Presence of low level outlets;
e Increased turbulence downstream of the dam associated with ancillary structures, e.g.
spillways and weirs.
e Reservoir shape (shoreline/surface ratio)
e Average water depth

Figure 1 shows how these steps are interlinked, in a decision tree structure.
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Catchment characteristics
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Low vulnerability to gross
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nutrient?
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catchment) to provide
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Figure 1 — Three-step decision-tree approach
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Summary description of the decision tree (Figure 1):

The first step estimates the potential supply of organic carbon and nutrients, by evaluating the
capacity of the contributing areas (upstream catchment and flooded area) to deliver these to the
reservoir. This evaluation is done by assessing the carbon and nutrient stock in the catchment
(vegetation and soil, including flooded areas), and also by verifying if the available carbon and
nutrients are labile. If the stock of carbon and nutrient in the catchment is small, the carbon and
nutrient loads will be small, and the site will have a low vulnerability to gross GHG emissions; the risk
assessment analysis is then complete. Otherwise, it is necessary to determine if the available carbon
and nutrient is labile. If the carbon and nutrient are available in the catchment, but they are not
labile, the supply of organic carbon and nutrients to the reservoir will be small. Consequently, the
site vulnerability to gross GHG emissions is considered to be low to medium, and the risk assessment
analysis is complete. If not, it is necessary to proceed to the second step.

The second step has the objective of evaluating whether the necessary conditions for storing GHG
are present. The parameters that modulate the rates of the biological processes creating a stock,
were identified by IHA (2010), as Primary parameters. If there is an adequate supply of carbon and
nutrients, but the reservoir does not have the conditions needed to convert this supply to GHGs,
there can be no GHG emission from the reservoir; consequently, the site is likely to present a low-to-
medium vulnerability to gross GHG emissions, and the risk assessment analysis is complete.
Otherwise, the GHGs will be available dissolved in the water of the reservoir, and it is necessary to
proceed to the third step, to evaluate if the vulnerability to gross GHG emissions is medium or high.

The third step identifies whether the reservoir has the necessary conditions to release the available
stock of GHG from the water into the atmosphere. The parameters that modulate gas exchange
between the atmosphere and the reservoir or downstream river, allowing the release of GHGs, were
identified by IHA (2010), as Secondary parameters. If the GHGs are available in the reservoir, and the
reservoir has the capacity to release them, the vulnerability to gross GHG emissions is high, and
there is a need to assess the vulnerability to net GHG emissions; otherwise, the site is likely to
present medium vulnerability to gross GHG emissions (and there is a possible need to assess the
vulnerability to net GHG emissions).

The decision tree also has the option of “no information available” directing the decision in the same
direction as “false”, i.e. remaining on the high vulnerability track.
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ANNEX 2 —DESCRIPTION OF THE EMPIRICAL MODELS

C-CO, Flux model

The article by Barros et al. (2011) was the initial source for data for the development of this tool.
This data was revised and complemented by data from more recently published papers (see ANNEX
3) and by estimates of additional parameters, such as mean annual temperature, mean annual
precipitation, and mean annual runoff, obtained from datasets available from various open sources,
as described in ANNEX 3.

However, the modelling approach developed by the Project was quite different from that of Barros
et al. (2011). It was intrinsically non-linear (and therefore had to be fitted to the data using non-
linear algorithms) and more complex, but afforded more flexibility in the shapes of the curve
describing the initial decline of CO, emissions following flooding. Several alternative formulations
were attempted but the following general expression provided both the best empirical fit and a
realistic representation of the processes:

Flux C — CO, = B0+ B1 X1 + (B2 — B3 * X2) x e P4X3+Age (Eq. 1)

where the Bs are the fitted coefficients and the Xs are variables chosen from a suite of potential
independent variables (see section 3.2). This particular formulation was chosen because it satisfied
four main conditions. First, it allows the model to potentially create a « plateau » to non-zero
emissions. Second, the level of GHG emission at this new equilibrium can also be modulated by
other factors, such as local climatic conditions (runoff, precipitation, temperature, etc.). Third, the
initial decline in GHG emission following flooding was made more flexible that the double-
logarithmic model of Barros et al. (2011). In particular, the steepness of this initial decline (the
exponential term) was made to potentially interact with other variables. Thus, the shape of this
decline could be modulated (i.e. made more or less steep) by the influence of other variables. Lastly,
the initial GHG emission (i.e. at Age=1 year) was made to potentially vary according to other
variables as well.

After many attempts using different variable combinations, the best model had the following
structure:

Flux C — CO, = 186.0 + 0.148 * Runoff + (944.485 + 1.91  Temp + 0.09727 » Temp?) « e~00044+[52:339-0.7033+Temp-0.0358-Temp?|-Age
(Eq.2)

The structure of this model implies that: 1) the maximum CO2 emission occurring immediately after
flooding is a positive function of temperature (i.e. maximum for higher temperatures); 2) the new
long-term equilibrium emissions (after the initial pulse) is a positive function of runoff (higher in
locations with higher runoff); 3) the steepness of the initial decline (the exponential term) is a
negative function of temperature (i.e. steeper and faster decline at lower temperatures).

The model explained about 45% of the variation and had an uncertainty best described on a base-10
logarithmic scale (root mean square error=0.36). The range of variability of the estimates can be
expressed by the confidence interval of the predicted values, as described in section. 3.3.2.
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C-CH, Flux model

In the case of methane, the same dataset was used, but a different modelling approach was
adopted. While the Project did test the same model structure as for CO,, little predictive gain was
obtained relative to simpler empirical modelling approaches. In the end, the Project used a semi-
logarithmic model combined to a regression tree approach, with different empirical models for
different segments of the variable space. In particular, we developed a model where CH, flux is a
function of mean annual temperature, mean annual precipitation and age for reservoirs that are 32
years old or less. For older reservoirs, diffusive methane emissions are constant in time at a level
which is determined by temperature and precipitation only. The following models were developed:

For Age<=32 years

_ _ 2
C — CH4 Flux = 10(1.46+0.056*Temp 0.00053*Prec—0.0186+xAge+0.000288+Age~) (Eq. 3)

For Age>32 years

(1.164+0.056xTemp—0.00053+*Prec)
C—CH4 Flux =10 (Eq. 4)

The combined equations explain about 42% of the observed variation. Its uncertainty is best
described by a logarithmic root mean square error of 0.55.

Range of variability of the estimates:

The range of variability of the estimates can be expressed by the confidence interval of the predicted
values (see section 3.3.2).

The confidence interval for the predictions is obtained as:
P[“lower limit” < “GHG flux” < “upper limit”] = a% (Eq 5)

The values of “lower limit” and the “upper limit” can be estimated as a function of the predicted
values of gross GHG fluxes (of CH, and CO,) and the mean square errors. Table 1 expresses how to
estimate the values of the limits of the 67% confidence interval, for the models adopted in this Tool.

Table 1 - “lower limit” and “upper limit” of the 67% confidence interval
for the models adopted in this Tool

Predicted Value “lower limit” “upper limit”

Gross C-CO, Flux 2L x “predicted Gross C-CO, Flux” 2.3 * “Predicted Gross C-CO, Flux”
2.3

Gross C-CH,4 Flux 1 x “predicted Gross C-CH, Flux” | 3.55 * “Predicted Gross C-CH, Flux”
3.55

Obs.: Both models have uncertainty best described on a base-10 logarithmic scale. Consequently,
the factors 2.3 and 3.55 are derived from 10°*® and 100'55, respectively.
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ANNEX 3 — DATASET FOR THE DEVELOPMENT OF THE EMPIRICAL MODELS

The initial source for data was obtained from Barros et al. (2011). This data was revised by
comparing with the information from the original sources, and complemented by data from more
recent papers (see bibliographic references, in the dataset tables, and at the end of this ANNEX) and
by estimates of the parameters mean annual temperature, mean annual precipitation, mean annual
runoff, bioclimatic factor, net primary productivity, and soil carbon density, obtained from datasets
available from various open sources.

The data adopted for the development and calibration of the empirical models of this GHG Risk
Assessment Tool were derived from 212 field assessments of gross GHG emissions on 169 reservoirs,
as presented in the tables of this ANNEX. The following notes present explanations of aspects of
theses tables, to allow a proper understanding of the meaning of some elements, as well as to detail
the data sources.

Note 1: g-bathymetric shape

g is the exponent from the bathymetric expression Az=A0(1-Z:Zmax)® due to Imboden (1973). q
accomodates many shapes, from cup-shape (q=1) to almost completely flat with a small deep hole
(g=5-6). Integrating this equation, a simple relationship between mean and maximum depths is
obtained (Zmean=Zmax/(q+1)), allowing the estimation of the value of q for the reservoirs (from
average and maximum depths).

Note 2: Reservoir cross-section and shape categories
The most representative cross-section and shape of the reservoir, using the elements shown in
figure 2.

Cross-sectional shape

— T~ T~

U \ Y

Shape seen from above (bird's eye view)

O

1 2 3

Figure 2 — Typical cross-section and shape of the reservoir
(to compute a reservoir shape index)

Note 3: Weighting index

The criteria for weighting the data was based on the level of confidence that the value reported in
the data template is an accurate representation of the annual fluxes. The estimation of this level of
confidence was assessed with basis on the following criteria:

Level 1: Very few samples in both in time and in space. Possibly frequent and/or severe
methodological problems and uncertainties. Overall assessment: Poor confidence that the
reported value is an accurate representation of the annual flux. A first cut.
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Level 2: Limited sampling campaigns with significant gaps in the temporal and spatial coverage.
Possibly frequent and/or severe methodological problems and uncertainties. Overall
assessment: Limited confidence that the reported value is an accurate representation of the
annual flux. A coarse approximation.

Level 3 : Several sampling campaigns covering a significant portion of the annual cycle and of the
surface area. Some methodological uncertainties and some independent validation of
techniques. Good replicability and moderate variability in the results. Overall assessment:
Moderate confidence that the reported value is an accurate representation of the annual flux. A
good approximation.

Level 4: Multiple sampling campaigns in multiple stations covering most of the reservoir surface.
Some extrapolation made to cover periods that were not sampled. No major technical problems
or uncertainties and rigorous independent validation of techniques. Overall assessment: High
level of confidence that the reported value is an accurate representation of the annual flux. A
high quality result.

Level 5: Extensive and detailed sampling regime covering the complete annual cycle. Multiple
stations covering the entire surface area. Convergent multiple techniques to estimate flux.
Overall assessment: Very high level of confidence that the reported value is an accurate
representation of the annual flux. The best data money can buy.

Table 2 summarises these criteria for weighting data in model development

Table 2 — Criteria for weighting data in model development

Method/uncertainty
Resolution/representivity

Poor Good Verified
Spatial + temporal low 1 2 3
Spatial high + temporal low 2 3 3
Spatial low + temporal high 2 3 4
Spatial + temporal high 3 4 5

Note 4: BioClimatic Factor
The BioClimatic Factor estimates were obtained from WorldCLim, a global climate data GIS data
repository. The maps with this data can be downloaded at http://www.worldclim.org/download.

Note 5: Mean annual air temperature, precipitation and runoff
Estimates on mean annual values for air temperature, precipitation and runoff were obtained from
Fetke et al. (2000).

Note 6: Net Primary Productivity
Net primary productivity estimates were obtained from the socioeconomic data and applications
centre of Columbia University, at http://sedac.ciesin.columbia.edu/es/hanpp.html.

Note 7: Soil Carbon density
Soil Carbon density estimates were obtained from Hiederer and Kéchy (2011).
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ANNEX 4 — CONVERSION FACTORS

1. Conversion from moles to grams

In chemistry, a mole is considered to be Avogadro's number (6.02 x 10%*) of molecules (or anything)
of a substance - so depending on the density of the substance, the mass of that amount of the
substance could vary widely.

To convert from moles to grams you must first find the molar mass of the element or compound.
Use the periodic table to read off the atomic mass from an element. If it is a compound, you must
know the molecular formula, and then you find the total molar mass of the compound by adding up
the atomic masses of each atom in the compound. The unit of the molar mass will be in grams per
moles (g/mole).

Once you have the molar mass, you can easily convert from grams to moles, and also from moles to
grams.

Number of moles = (# of grams) + (molar mass)

Number of grams = (# of moles) x (molar mass)

For carbon dioxide and methane (most common GHG species in reservoirs):

Element Atomic mass GHG Molar mass
(g/mol) (g/mol)
C 12 Co, 44
16 CH,4 16
H 1

2. CO, equivalents (CO,eq or CO,equiv)

The international practice is to express GHG in CO, equivalents (CO,eq or CO,equiv). Emissions of
gases other than CO, are translated into CO,eq by multiplying by the respective global warming
potential (GWP). From the 2007 IPCC report:

GWP relative to CO, at different time horizon for carbon dioxide and methane

Gas name Chemical Global warming potential (GWP) for given time horizon
formula 20-yr 100-yr 500-yr
Carbon dioxide Cco, 1 1 1
Methane CH, 72 25 7.6

Source: 2007 IPCC Fourth Assessment Report (AR4)

The IPCC considers the GWP of GHGs in a 100-year time frame.

It is important to note that care must be taken on the use of GWP as the conversion factor for
calculation of gases’ warming potential equivalences, as the IPCC GWP is not widely accepted to
correctly represent the relative weight of the gases on the change in global temperature.
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3. Conversion from “g of GHG” to “g of Carbon”

The conversion between “g of GHG” and “g of Carbon” is directly related to the ratio of the atomic
mass of a GHG molecule to the atomic mass of a carbon atom. Essentially, this practice accounts for
the carbon in the GHG molecule, as opposed to counting the entire molecule.

For carbon dioxide, the ratio of the atomic mass of a CO, molecule to the mass of a carbon atom is
44:12.

e To convert from “g of C” to “g of CO,”, multiply by 44/12

e To convert from “g of CO,” to “g of C”, multiply by 12/44

e Sometimes you find this noted as gC-CO, or tC-CO, (to make clear that these “g of C” refer to
Carbon in a CO, molecule).

For methane, the ratio of the atomic mass of a CH, molecule to the atomic mass of a carbon atom is
16:12.

e To convert from “g of C” to “g of CH,”, multiply by 16/12

e To convert from “g of CH,” to “g of C”, multiply by 12/16

e |t is important to make clear that these “g of C” refer to Carbon in a CH, molecule (i.e., NOT
CO,eq - not taking into account GWP). It is common to use gC-CH, or tC-CH,

4. Conversion from “g of Carbon” to “g of CO,eq”

With the use of CO, equivalents (CO,eq or CO,equiv) it is possible to express emissions/removals of
different GHG species on the same units of mass (g of CO,eq), allowing then to compare and to
combine (add or subtract) these emissions.

To convert from “g of Carbon” to “g of CO,eq” it is necessary to:

e first convert from “g of C” to “g of GHG” (see item 3),
e and then multiply by the respective global warming potential (GWP) in order to obtain the
“g of CO,eq”.

For CO,, as the GWP is 1, it is only necessary to convert from “g of C” to “g of CO,”, multiplying by
44/12.

For methane:

e first convert from “g of C-CH,” to “g of CH,”, multiplying by 16/12
e and then, adopting the IPCC GWP for a 100-yr time-horizon, multiply by 25 in order to
obtain the “g of CO,eq”.

After converting the unit “g of Carbon” from the different GHG species in analysis to the unit
“g of CO,eq”, it is possible to compare the emissions or to add/subtract all values and then to obtain
a total estimated emission expressed as “g of CO,eq”.

It is also possible to express these values as “g of C-CO,eq” (grams of Carbon in the CO,eq), by
multiplying the “g of CO,eq” by 12/44.
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5. Carbon dioxide equivalents vs. carbon equivalents

While the international standard is to express emissions in CO, equivalents (CO,eq), many U.S.A.
sources have expressed emissions data in terms of carbon equivalents (CE) in the past. In particular,
the United States Environmental Protection Agency (USEPA) has used the carbon equivalent metric
in the past for budget documents.

For the purposes of national greenhouse gas inventories, emissions are expressed as teragrams of
CO, equivalent (Tg CO,eq). One teragram is equal to 10** grams, or one million metric tons.

e To convert from CE to CO,eq, multiply by 44/12
e To convert from CO,eq to CE, multiply by 12/44
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